Accessory proteins function as matchmakers in the assembly of the T4 DNA polymerase holoenzyme

نویسندگان

  • Barbara Fenn Kaboord
  • Stephen J. Benkovic
چکیده

BACKGROUND During bacteriophage T4 DNA replication, the 44/62 and 45 accessory proteins combine with the DNA polymerase to form a processive holoenzyme complex. Formation of this complex is dependent upon ATP hydrolysis by the 44/62 protein. It is uncertain, however, whether the 44/62 protein remains with the 45 protein as part of this protein 'sliding clamp' during DNA synthesis, or whether it is required only for complex assembly. RESULTS To address this tissue, we have stoichiometrically assembled a processive T4 DNA polymerase holoenzyme complex, capable of strand-displacement synthesis, on a forked primer/template. By titrating the 44/62 protein to substoichiometric concentrations, we have shown that it can act catalytically to load on to the primer/template the 45 protein, which, in turn, combines with the DNA polymerase to form a processive complex. Two distinct complex species are formed: most of the complexes are highly stable, with a half life of 7 minutes, whereas the remainder have a half-life of 0.4 minutes. Precipitation of the protein-DNA complexes, followed by western blot analysis, verified that the complexes contain the DNA polymerase and 45 proteins, but not the 44/62 protein. CONCLUSION Using physiological protein concentrations, we have shown that the composition of the T4 protein sliding clamp consists solely of the 45 protein. The role of the 44/62 protein is that of a molecular matchmaker, in that it serves to load the 45 protein onto the DNA but does not remain an essential component of the processive complex.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

"Macromolecular crowding": thermodynamic consequences for protein-protein interactions within the T4 DNA replication complex.

In vitro biochemical assays are typically performed using very dilute solutions of macromolecular components. On the other hand, total intracellular concentrations of macromolecular solutes are very high, resulting in an in vivo environment that is significantly "volume-occupied." In vitro studies with the DNA replication proteins of bacteriophage T4 have revealed anomalously weak binding of T4...

متن کامل

Conditional coupling of leading-strand and lagging-strand DNA synthesis at bacteriophage T4 replication forks.

Eight proteins encoded by bacteriophage T4 are required for the replicative synthesis of the leading and lagging strands of T4 DNA. We show here that active T4 replication forks, which catalyze the coordinated synthesis of leading and lagging strands, remain stable in the face of dilution provided that the gp44/62 clamp loader, the gp45 sliding clamp, and the gp32 ssDNA-binding protein are pres...

متن کامل

Building a replisome solution structure by elucidation of protein-protein interactions in the bacteriophage T4 DNA polymerase holoenzyme.

Assembly of DNA replication systems requires the coordinated actions of many proteins. The multiprotein complexes formed as intermediates on the pathway to the final DNA polymerase holoenzyme have been shown to have distinct structures relative to the ground-state structures of the individual proteins. By using a variety of solution-phase techniques, we have elucidated additional information ab...

متن کامل

Building a Replisome Solution Structure by Elucidation of Protein- Protein Interactions in the Bacteriophage T4 DNA Polymerase Holoenzyme*□S

Assembly of DNA replication systems requires the coordinated actions of many proteins. The multiprotein complexes formed as intermediates on the pathway to the final DNA polymerase holoenzyme have been shown to have distinct structures relative to the ground-state structures of the individual proteins. By using a variety of solution-phase techniques, we have elucidated additional information ab...

متن کامل

Homology in accessory proteins of replicative polymerases--E. coli to humans

The basis for the remarkably high processivity of DNA polymerases that duplicate long chromosomes appears quite similar in prokaryotes and eukaryotes. In each of these cell types, the replicative polymerase has several accessory proteins which endow the polymerase subunit with its speed and processivity. The replicative polymerases of the well studied systems of bacteriophage T4, E.coli (DNA po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 5  شماره 

صفحات  -

تاریخ انتشار 1995